The electric fish Brachyhypopomus pinnicaudatus produces jamming avoidance responses to signals that are harmonically related to its own discharges.
نویسندگان
چکیده
Jamming avoidance responses (JARs) are exhibited by pairs of pulse type electric fish that discharge with similar frequencies whenever their individual pulses are about to coincide: responses consist of the transient shortenings in inter-discharge intervals in the fish with the higher frequency. This study describes and models novel forms of JARs observed in sexually mature male or female Brachyhypopomus pinnicaudatus. One novel JAR was observed in male-female pairs in their natural habitat. It happened when the baseline frequencies were not similar but, rather, when one was almost twice that of the other; moreover, the transient interval shortenings occurred not in the fish with the higher frequency but in the slower one. Transient interval shortenings similar to those in all natural JARs were observed in individual fish in tanks and submitted to periodic electrical pulse trains. They happened not only when pulse frequencies were slightly lower than the unperturbed frequency emitted by the fish but also when slightly lower than the frequency's sub- or higher harmonics (e.g. one half or twice). The proposed model satisfactorily reproduces all experimental observations. In it, forthcoming inter-pulse intervals reflect the differences between the cophases of pulses that arrive within the 'sensitive windows' belonging to either consecutive (i.e. one and the next) or alternating (e.g. every other, every three) intervals. Paired pulse fish embody interacting oscillators, and, in particular, JARs embody either quasiperiodic phase walk-throughs and intermittencies or periodic and locked forms. Hence, their study would profit by the powerful theories and approaches advanced by nonlinear dynamics.
منابع مشابه
Mate preference in female electric fish, Brachyhypopomus pinnicaudatus
Weakly electric fish communicate with brief electrostatic field pulses called electric organ discharges (EODs). EOD waveforms are sexually dimorphic in most genera, a condition thought to result from mate choice acting to shape the electric signal’s constituent action potentials. We have no direct behavioural evidence that sexual selection by either mate choice or intrasexual competition is res...
متن کاملCircadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus.
Weakly electric fish have long been known to express day-night oscillations in their discharge rates, and in the amplitude and duration of individual electric organ discharges (EODs). Because these oscillations are altered by social environment and neuroendocrine interactions, electric fish are excellent organisms for exploring the social and neuroendocrine regulation of circadian rhythm expres...
متن کاملSex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus.
To understand the evolution of sexually dimorphic communication signals, we must quantify their costs, including their energetic costs, the regulation of these costs, and the difference between the costs for the sexes. Here, we provide the first direct measurements of the relative energy expended on electric signals and show for the focal species Brachyhypopomus pinnicaudatus that males spend a...
متن کاملOpposing actions of 5HT1A and 5HT2-like serotonin receptors on modulations of the electric signal waveform in the electric fish Brachyhypopomus pinnicaudatus.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their ...
متن کاملSerotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus.
The gymnotiform electric fish Brachyhypopomus pinnicaudatus communicates with a sexually dimorphic electric waveform, the electric organ discharge (EOD). Males display pronounced circadian rhythms in the amplitude and duration of their EODs. Changes in the social environment influence the magnitudes of these circadian rhythms and also produce more transient responses in the EOD waveforms. Here ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 17 شماره
صفحات -
تاریخ انتشار 2004